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Topological entanglement in polymers 

David J Elderfield 
Department of Theoretical Physics, The University, Manchester M13 9PL, UK 

Received 30 September 1980, in final form 20 October 1981 

Abstract. The Brereton-Shah problem of two polymer loops topologically linked is studied 
by field theoretical methods in the limit that one polymer is allowed to fill a macroscopic 
volume at finite density 6. For L >> 1 it is shown that typically for winding numbers 
mz << Lab, a = 2 - EV,  universality is observed with the critical exponents of the uncon- 
strained system despite the presence of a ‘dangerous’ renormalisation group instability. 
Here L is the length of the smaller polymer loop whose mean square size ( R z )  - L”; v = 1 
for random flight statistics or Y -f for the swelled chain case. 

1. Introduction 

Over the years the study of linear polymer chains by means of a direct isomorphism with 
a variety of n + 0 field theories, outlined by many authors (de Gennes 1972, des 
Cloizeaux 1975, Emery 1975, Burch and Moore 1976), has resulted in a reasonably 
complete understanding of such systems. In particular, these field theoretic approaches 
present an ideal framework within which to discuss the universality structure of polymer 
systems using the renormalisation group and the E expansion. Despite these great 
advances, the statistical mechanics of polymer loops has in contrast remained relatively 
undeveloped, for the notion of ‘topological entanglement’ presents many new prob- 
lems. Edwards (1967,1968) in a series of papers, and more recently Brereton and Shah 
(1980, BS), have outlined an approach to the problem of including the natural 
topological constraints on such systems, and have demonstrated an isomorphism 
between topologically constrained polymer models and a series of n + 0 locally gauge- 
invariant field theories. However, beyond some simple observations by Edwards based 
on the renormalisability of such models, the universality class structure has not been 
discussed in the literature. We shall in this paper seek to remedy this shortcoming for 
the BS system of two topologically linked polymer loops, showing that although the 
renormalisation group reveals a dangerous instability, the associated bare coupling is 
asymptotically (L>>1) very small, so that universality is observed with the critical 
exponents of the linear polymer system. 

Following a brief discussion of the knot classification problem and its role in the 
physics of polymer loops in 8 2, we shall in 0 3 outline the origin of the isomorphism 
which exists between the BS model of two coupled polymer loops and an n + 0 locally 
gauge-invariant field theory. Formulated as a field theory, we argue that it is useful to 
consider a continuation of the entanglement problem to d spatial dimensions. In 08 4 
and 5 we shall discuss the implications of this continuation for the problem of long 
topologically entangled polymer loops governed by excluded volume statistics, first 
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1370 D J Elderfield 

using naive perturbation theory and then by means of the more sophisticated renor- 
malisation group approach. Particular emphasis will be placed on the entropy S,,, and 
the mean square polymer size (R'), in the presence of a topological constraint specified 
by an index m. 

2. The statistical mechanics of polymer loops 

Topological entanglements represent an invariant aspect of a polymer system for they 
are by definition conserved throughout all the configurational changes that the poly- 
mers undergo. A simple example is provided by two polymer loops, for we see that two 
loops initially unlinked cannot in the course of time become linked without breaking 
one of the loops. 

A proper statistical description of a system of polymer loops must therefore, in 
addition to the usual physical variables, include a complete set of topological variables 
which serve to distinguish between all configurations which are not topologically 
equivalent. The topological variables are of course quenched in the sense that they are 
determined solely by the initial topological state of the system. Unfortunately the 
classification of knots (entanglements) is horrendously complex, so we shall be forced to 
follow Edwards and opt for a partial classification in terms of the Gauss integral I given 
by Alexandroff and Hopf (1935): 

Here Vu, 'ge are two polymer loops parametrised by vectors r,, r, in three dimensions. 
The function Ius taking values among the integers m, positive and negative, is indeed a 
true topological invariant for its value is unchanged under all deformations for which 
the loops are unbroken. Examining figure 1, it is clear that Iup is a valuable invariant, 
although it indeed only represents a partial classification: 

Figure 1. 

Later we shall propose a continuation of our problem to d spatial dimensions, so it is 
importact to remark here that of course the physical problem exists only in d = 3 since 
both for d = 2 and d 3 4 the problem becomes trivial. 

Despite the impracticability of obtaining a full topological specification, some 
functions of physical importance may be studied in the presence of entanglements. 
Consider for example a system of two polymer loops %,, %@ parametrised by vectors 
r, (s), r, (s'), s, s' = 1, . , . , N, and belonging to a topological class fully specified by a set 
of variables m, p ,  q . . . ; here m is the value of the first invariant I,@ etct. Fundamental 

t Mathematically it has of course never been proved that any complete sequence of invariants exists; 
however, naively I.@ is of primary importance, for if m # 0 the loops are certainly knotted non-trivially, whilst 
other invariants have certainly been identified, so our notation at least allows us to clarify the nature of some 
preliminary estimates of the effects of topological entanglements. 
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quantities of interest are the total number of configurations C,,... and averages such as 
the mean square size of a polymer loop (see figure 2): 

Figure 2. 

Here CmM...(R, s) is the number of topologically equivalent configurations for which 
r a ( s ) - r a ( 0 ) = R a n d I a 8 = m , . . . .  

Naturally the calculation of Cmw..., (R2),,... demands further knowledge of the 
topological structure; however, we may obtain some useful information by comparing 
the results obtained for a polymer system when all the topological aspects are naively 
ignored with those for a system in which only the first invariant Zs is respected (fixed)?. 
Defining C, to be the number of configurations for which the first invariant laa takes 
the value m and C = H, C, to be the overall total, then the reader will appreciate that 
the entropy S,,,,. of the physical polymer system satisfies the inequality 

(2.3) 
whence a valuable lower bound on the reduction in the entropy AS,,... = Smpq... - S due 
to topological entanglements may be obtained. 

To construct a representative average is more difficult, for knowing only the value m 
of the first invariant I,@, we must choose physically reasonable values for the remaining 
invariants. In the absence of further information, a suitable choice may be made by 
maximising C,,... at fixed m, a condition which, if we weaken to allow a distribution of 
values p ,  q, r . . . with probability g, 

S,,.., In C,,.,, c S, = In C, c S E In C, 

g(p, 4, t .  . - I m> E Cmw.../Cm, (2.4) 
leads us to examine the quenched average (R ), defined as follows for general 
distributions g: 

1 

Now for the choice (2.4) the quenched average m, coincides exactly with the mean 
square size of a polymer loop (R’), in an unphysical system for which only the first 
invariant Ips is respected, for (2.2), (2.4) and (2.5) imply that 

t The dynamics of sich a system will be a little strange, for strictly we must allow all configurations for fmed m 
to mix, i.e. 2 ( u ) + 2 ( d ) j ( 2 6 ) ,  say. 
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Here C, (R, s) is the number of configurations for which r, (s) - r, (0) = R and Ius = m. 
On this basis we may argue that a direct comparison between (R2),, (2.6), and the naive 
expression 

( R 2 )  = 9 dRd R2C(R, s), 
NC s = i  

where C(R, s) is the number of configurations for which r, (s) - r, (0) = R, should be a 
reliable guide to the effect of entanglements on the mean square size of a polymer 
(R2)mw.... We should finally remark that, in contrast, the quenched entropy s, bears no 
simple relation to the entropy S,, (2.3), even for the choice (2.4). 

3. The Brereton-Shah problem 

Following BS, we shall study the problem of two polymer loops topologically linked (Ias 
respected) in the limit that one of the chains is allowed to fill a macroscopic volume at 
finite density p,  for this system may be reformulated in terms of an n + 0 locally 
gauge-invariant field theory ideally suitable for a discussion of the effects of entangle- 
ments on universality. 

parametrised by vectors r, (s), rp(s' )  (see 
figure 2); then we may in terms of the simple phenomenological Hamiltonian H, 

Suppose we have two polymer loops Vu, 

introduced by Edwards (1966) to describe the configurational statistics of polymers 
comprising Li = N,A2 gaussian segments (links) i = a, 0 and interacting through the 
excluded volume coupling U A-" (dimensionless), write down the following expression 
for the number of configurations C,(R, s) (cf (2.6) et seq.) for which r, (s) - r, (0) = R 
and Ius = m (cf (2.1)): 

(3.2) 

Here [dri] represents a functional integral with the loop constraint ri(Ni) = ri(0) and 
the scale A-' is representative of the monomer spacing along the chain. Our discussion 
will centre around C,,,(R, s), (3.2), for we may trivially construct the mean square size 
(R2), of the polymer loop %, or the entropy S,  in terms of this basic function as 
follows: 

(3.3) 

S,  = In C,, (3.4) 



Topological entanglement in polymers 1373 

Cm =L IoNa ds I dRd Cm(R, s)t. 
Na 

(3.5) 

Naturally, to compute the overall number of configurations C(R, s) such that ra(s) - 
ra(0) = R and thence (R2) ,  s at (2.3), (2.7), we could use the identity 

However, it is instead more convenient simply to suppress the constraint las = m in 
(3.2), yielding the expression 

We are primarily interested in the limit that the polymer loop is allowed to fill a 
macroscopic volume at finite density 3, so it is useful to recast (3.2) and (3.7) in terms of 
a statistical average over the monomer density p ( R )  and vector bond density u(R) 
associated with the polymer loop Fe, : 

where we have included a rescaling by the monomer spacing A-' in the definition 

Formally integrating out the coordinates {ra} of the background polymer loop %'a in 
favour of the fields p(R) ,  u(R), we may rewrite (3.2) in the form 

where the functionals fi and P are given below: 

+ 2  I d s I  dRdp(R)S(ra - R ) + j  dRdp2(R)), (3.11) 

(3.12) 

Following Edwards (1967, 1968) and BS, we may simplify (3.12) and uncover the 

t Here jdRd C,,,(R, s) is independent of s and is averaged jrds /N  purely for convenience. 
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underlying gauge symmetry of the problem by introducing a new field A(R):  

curl A(R)  = u(R), (3.13) 

divA(R)=O. (3.14) 
Drawing on the direct analogy with electromagnetism, we see that most generally A(R) 
may be written as a line integral, 

(3.15) 

so that the invariant lap, (2. l), has a particularly simple representation in terms of A(R): 
c 

(3.16) 

Guided by the simple structure of lap, (3.16), we formally integrate out the coordinates 
u(R) in favour of the ‘vector potential’ A(R), rewriting (3.10) in the form 

dr, . A - m ) s [ r , ( s ) - r , ( O ) - R ] e x p ( - A ) I  [du] Q. (3.17) 

Here the functional Q which describes the effect of the background polymer loop ie, 
has the following structure: 

(3.18) 

In order to rewrite (3.18) in a useful form we must examine the physics of the finite 
density limit for the chain %’@ Now for a random walk we would estimate 3 - L1-d’2 A 
(p  decreases as Lp + oo), whence to achieve a finite density ij the containing box must 
actively restrict the polymer WO so that the evaluation of (3.18) is non-trivial even for 
this simple gaussian measure. Qualitatively, however, the dominant (and universal) 
structure expected arises from the correlation of p ( x ) ,  u ( x )  over distances 1 << xA<< Lk’2 
(at least), which may realistically be modelled in terms of an equivalent system of M 
independent gaussian chains of an average length 1, say, providing x A < c L ’ / ~  and 
p =ME/ V. In this sense we may therefore express the ‘dominant’ correlations in the 
form 
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over distances xA<< ,f?” despite the constraint dRd (u(R)f(Cp}, {U})) for all function- 
als f which follows from the loop constraint rs(NB) = rs(0). Higher correlations will 
only modify the structure of the dominant terms in the critical semi-dilute regime 
defined by the inequalities UN$ >> 1, up’<< 1 (d  <4) where we shall find that the 
topological entanglements are entirely negligible, so for our purpose these corrections 
can be ignored?. 

Evaluating Q via (3.19)-(3.23), we find the exponentiated form 

Q =exp(-j)( I -dRd (Vp(R))2+(curlA(R))2) +O((V2p)p2, (curl A)4) (3.24) 

where the derivative couplings of the first corrections to the gaussian approximation 
ensure that such terms are only of interest for d < 4 dimensions despite the d3 nature of 
the field p(R). 

Combining finally the results (3.11), (3.17), (3.24) and introducing an integral 
representation for the topological constraint, it is now straightforward to obtain the 
expression 

C,(R, s)= I de exp(iem) I dR I dA I dp n S[divA(R)]S[r(s)-r(0)-RI exp(-8) 
R 

(3.25) 

where the functional 8 closely resembles the Lagrangian of a quantum mechanical 
particle moving around a loop in an electromagnetic field specified by a vector potential 
A(R) ,  

N N  ar N 2 

9 = Io ds [ (E) - ieA ( r )  as + up ( r  )] + I ds I ds‘ S [r (s) - r (s’)] 
0 0 

(3.26) 

Here the function r = r (s )  satisfies the loop constraint r ( N )  = r(0). For long flexible 
polymers, L = NA2 >> 1, (3.26) should describe the universal properties which arise 
from the correlations over scales x, 1 << x A d L1/’ << L”’. Our approximation scheme 
breaks down only if distances X A  3 L”’ become important; however, in such a situation 
the value of the phenomenological Hamiltonian H must surely be reviewed, so we shall 
assume from here that (3.26) is an adequate generalisation of the Edwards model (3.1) 
to the case of entanglements. More generally, (3.26) is of interest in its own right, for 
under the renormalisation group the couplings e’;, ii grow uncontrollably in d < 4  
dimensions (see 0 3, which would suggest that the representation is inadequate; in 0 5 
we shall show that this fear is unfounded for winding numbers m << m,, Gc (5.37; m,, 
G, - L”, a > 0). 

In order to compare (3.25) and (3.26) with the BS expressions it is convenient to 
follow Edwards (1975) and integrate over the density field p(R) to obtain 

C,(R, s) = de exp(iem) [drl I [dA] n s[divA(R)]S[r(s)-r(O)-R] exp(-E) 
R 

(3.27) 

t In fact this gaussian scheme describes the dominant terms in the dilute and semi-dilute limits correct to first 
order in the usual loop expansion (no entanglements). 
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where 
N N‘ ar ’ ar U 

N 

i=L d s ( g )  -ieA dslo d s ‘ l  dqdf(q)exp(iq{r(s)-r(s‘)])  

+y dRd (curl A(R))’ (3.28) 
P ‘ I  

(3.29) 

For polymer loops described by random flight statistics (U = 0), indeed (3.27), (3.28), 
(3.29) reduce to the expressions of BS; however, for U # 0 the ‘effective’ excluded 
volume f ( 4 )  is a subtle function of the momentum transfer 4, (3.3), so that the BS 
extension to loops with excluded volume is strictly only valid in the dilute u$V << 1 limit 
(see P 4). 

To discuss the field theoretical approach to (I?’),, S, it is simplest to restrict our 
attention to the derived function Cm(R), 

(3.30) 1 
N 

Cm(R)=- I ds C,(R, s). 

Proceeding by direct analogy with the linear polymer approach (Emery 1975), we first 
introduce the representation 

N N  

exp(-glo dsjo ds’S[r(s)-r(s’)]) 

N 

= I [d4] exp[ -1 dRd (:tJ(R)’+i jo ds ~,b(R)S[r(s)-Rl)] (3.31) 

for the excluded volume term (cf (3.1)) in order to rewrite (3.30) in a factorised form. 
Explicitly we may express C,(R) via (3.30), (3.31) and (3.26) as follows: 

c m  (RI = I ds I de exdiem) [d41I EdAI J [dpl fl S[divA(R)I exp(-W 
l N  

0 R 

xK(R,  S, A)K(R, S, -A) (3.32) 

where the functionals K(R, s, [A]) and M({A}, (pH$}) are of the form 
N 2 

K = I [dr] S[r(s)-r(0)-RI exp [ - Io ds[(E) - - i e A ~ + d 4 + W ) ] ] ,  
(3.33) 

1 1 
P P 

M = dRd (:$‘(I?) + =(Vp(R))’ + up’(R) + (curl A(R))’). 

Laplace transforming (3.32) with respect to N then allows us to redevelop (3.32) in 
terms of the transformed functions as a simple product: 
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L,(K(R,s,A))=I ds e-"K(R,s,A)=K(R, t,A). (3.35) 

Now it is well known (see for example Feynman and Hibbs (1965)) that the function 
K(R, s, A) defined by equation (3.33) satisfies the differential equation 

[a/as-(V-ieA)'+p+i4]K(R, s,A)=S(R) (3.36) 

or equivalently 

[ t -  (V-ieA)'+p +it+blK(R, t, A )  = S(R) 

so that we are led to make the formal identification 

(3.37) 

(3.38) 

where the field theoretic average is computed from the following Hamiltonian: 

H ( ( 4 ) )  = -3 f dRd 4: (R)[(V-ieAI2 + p  + i 4  - t]4a(R). (3.39) 
a-1 

Here &(R) is an n-dimensional complex field. Furthermore, with the constraint 
V A = 0, (3.14), one may derive the complementary result 

K(R, t,-A)=(4,*(R)4a(O))* (3.40) 

Using (3.38) and (3.40), we may then replace (3.34) by the form 

Lt(NCm(R)) = I de exp(iem) [dA] [dpl [d4l exp(-M) 

x (4a tw4a (0)) (4; (RMs (0)) (no sum on a, f l ) .  (3.41) 
Specialising now to the n + 0 limit of the field theory (3.39), we see that 

z = J d d  exp[-~t{41)1= 1 (3.42) 

whilst the gaussian nature of (3.39) ensures that 

so that we may reformulate (3.41) as follows: 

L,(NC,,,(R)) = lim de exp(iem) [dA] I [dp] d 4  exp(-M) 

x 1 [d41 4,(R)4$ (OM; (R)4B(0) expE-H({41)1, 

n +O 

(3.44) 

whence, finally integrating out the field (L(R), (3.31), (3.33), we obtain the result 

1 
Cm(R)=N lj3 I de exp(iem)L;'(4a(R)4,* (014; ( R ) 4 ~ ( 0 ) )  (3.45) 

where the field theoretic average is computed for the Hamiltonian of three fields 4,(R), 
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2 1  
+;( z1 I40 I?) +s(vP)z  + U P Z ] .  

P 
(3.46) 

Here L;’ denotes the operation of Laplace inversion. Alternatively we can, at the cost 
of introducing a non-local 44 coupling, integrate out the p ( R )  field exactly to leave an 
effective two-field Hamiltonian H (cf (3.28), (3.29)), 

(3.47) 
where as before the effective potential f(q) is given by equation (3.29). 

Our results (3.46) or (3.47) represent the correct generalisation of the BS expres- 
sions valid for polymer loops obeying random flight s:atistics. As remarked before, cf 
(3.27) et seq., in the dilute regime uCjN << 1, f ( q )  + 1, leaving a local effective Hamil- 
tonian H*, 

2 

H*-J dRd(S(curlA)’+f 1 i /(V-ieA)C,/2+f/4.1Z)+;( f I4.I2) , 
u = l  a = l  

(3.48) 

which may be compared directly with the result conjectured by BS for loops with 
excluded volume interactions. BS argue that the effective Hamiltonian is of a form 
similar to Hertz (1978), 

H** = J dRd (:(curl A)’+; J(V -ieA)q5,1z + t(4,J2 +fl&I4), 
0 = l  

(3.49) 
which in contrast with (3.48), . . . possesses an S, xO(2) rather than O(2n) global 
symmetry. Here Sn is the permutation group of n objects. Physically BS are surely in 
error, for in the limit p” + 0 and m = 0 we would hope that the topological constraint is 
irrelevant. This is indeed the situation, for p” + 0 implies curl A = 0, cf (3.48), and thus 
A =V8(R) for some scalar potential 8(R),  allowing us to eliminate the topological 
constraint by means of the local gauge transformation 

(3.50) 

to leave the canonical O b )  symmetric field theoretic representation for the statistics of 
single polymer chains 

(3.51) 

(Elderfield 1978, des Cloizeaw 1975). For our purposes this discrepancy is essential, 
for the Hertz model contains a further renormalisation group instability which cannot 
be suppressed by the mechanism employed in 55 4 and 5 for the entanglement problem. 
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4. The random flight (uA-" +x 1) limit of the Brereton-Shab problem 

Conventionally as a first move theoreticians have for many years factored out the 
non-universal features of the polymer functions of interest, presenting them as simple 
scale factors. In contrast, we shall argue that in the presence of topological constraints 
there is an important coupling between the universal and non-universal aspects of the 
problem which leads via a subtle mechanism to the conclusion that entanglements are 
irrelevant in the long-chain limit. We shall approach the problem in this section by 
showing that entanglements modify functions characterising the large-scale (or uni- 
versal) behaviour by terms typically of order 1/L in the perturbative uA-" << 1 or 
random flight limit of the excluded volume statistics imposed on the polymer chains. 

Our discussion focuses first on the function C, (R, N )  which may be computed via 
the field theoretic connection (3.43, 

where the field theoretic average is computed using the Hamiltonian (3.47): 

H = dxd (:(curl AI2+; f I@-ieA)4,(x)12+ tl&12) 
a = l  

To investigate (4.1) we employ the usual perturbative scheme, which may be expressed 
in terms of Feynman graphs with propagators 

(A,(q)Au(-4))~4-2(S,u -4,4uq-2>= - , 
( ~ 0 1 ( 4 ) ~ 5 ( - 4 ) ) i S a 8 / ( 4 2 + t ) l  -7 

in momentum space and vertices 

Although our entanglement problem was formulated in d = 3 spatial dimensions, it is 
fruitful to consider the continuation of this perturbation theory to d dimensions. Of 
course for d = 2 or d > 3 the real entanglement problem becomes trivial (see 5 1). 
Simple power counting arguments (see Brkzin et a1 1973 (BLZ)) pick out d = 4 as the 
borderline dimension below which the dimensionless couplings uA-', e2p'A-" (d  = 4 - 
E )  become relevant to the physics of the critical domain RA>>1, t/A2<< 1 or 
equivalently L = NA2 >> 1, where we expect to observe universality. For d > 4  the 
expansion becomes trivial in the sense that the zeroth-order result 
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is modified only by a change in the amplitude A = A(e'p'A-", U A-") independent of R, L 
in the critical domain, so that as expected 'entanglements' do not modify the essential 
physics for d > 4 within this simple continuation. In contrast, for d 4 perturbatively 
the couplings are strongly relevant, for deep in the critical regime the expansions fail 
through the growth of the appropriate dimensionless couplings UPI"'~, e2;N'" , . . . . I n  
order to control these expansions we shall seek in 0 5 a renormabation group scheme in 
d = 4 - E  (6  = uh-", f = e2@A-E; f, z2 = O(E)) ;  however, as a preliminary we first 
examine the contraints imposed on the polymer functions C,(R, N) in the perturbative 
or free chain domain uh-" << 1 by the constraint that the topological entanglements be 
irrelevant. 

In the critical domain the large length scales N1l2, (up')-'/' dominate the physics and 
we expect to observe universal behaviour in terms of some renormalised couplings 
which precis the effects of the short-range (-A-') or non-universal aspects of the 
system. Following BLZ, we may rephrase C, (R, N) in terms of variables appropriate to 
the critical regime by employing a renormalisation scheme for d s 4 ( f ( q )  + 1, 4 + 00) 

dimensions and in particular the physical dimension d = 3 of primary interest. Speci- 
alising first to d <4, this programme may be accomplished by a simple shift in the 
temperature r, 

t = i- A A ~ ,  (4.4) 
where we choose A (dimensionless) such that t'= 0 locates the critical point at which the 
dominant correlation length diverges, or equivalently where the inverse susceptibility 
,y-' vanishes. As usual the 'magnetic' susceptibility ,y is directly related to the two-point 
Green function G2(q, t) taken at zero momentum, 

G&(q, t )=  [ dRd exp(iq)R(~,(R)~~(O)) ,  

&OX E G%p(O, t ) ,  

so evaluating the constraint ,y-'(t'j = 0 at i= 0 we find perturbatively 

A(e2p'A-', uh-") = 0 + 0 +O((e2p')2, U') (4.5) 

where at least to first order in e2, aA/ae2 > 0. After this renormalisation and trans- 
formation to momentum space we may rewrite C, (4, N) in the form 

C,(q, N) = N-d/2 [ de exp(iem - AL)G (4.6) 

where by construction the dominant contribution c,,, in the critical domain may be 
expressed as follows in terms of a scaling function d which, dependin only on the 
macroscopic scales N1/', (up')-'/', is insensitive to the short-distance (A structure of 
the chains: 

-f 

cm(q, N) = N-d/2 de exp(iem -AL,)&q2N, ezbNe/2, up'IV). (4.7) 

Typically to isolate d we may place the system deep into the critical domain q2,  1/N, 
up' << A2 by taking the limit A + 00 such that 

G= lim G 
A-m 

(4.8) 
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at fixed q, N, ub, e2, U .  Rephrased in these terms, we therefore see that the universality 
exhibited by C,(q, N) through G will generally be modified by the essentially non- 
universal function A = A(eZp’A-”, u A-“) which depends strongly on the small-scale 
details of the underlying polymers. Here G(q, N )  is of course directly related to the 
Green function (I$#&#) via (4.1), (4.4) as follows: 

a + B  1 
Ndl2G(q, N )  = - lim L;’ I dRd exp(iq R)(#,(R)&z (0)#g(R)&e(O)). N n-O 

(4.9) 

Analysing first the entropy S, = In C,, (2.3), we see that for long chains L >> 1 (or 
critical physics) the dominant contribution is of the form 

exp(S,) = N-d/2 de exp(iem -AL)d(q, N)lq=o (4.10) I 
where d(q, N) is given graphically by the expression? 

To simplify the discussion it is useful to examine the physically realisable limits of dilute 
ubN<< 1 and semi-dilute ubN >> 1 physics separately, where 0, = u ~ N  is a direct 
measure of the overlap between the chains %’=, SB. For dilute physics we find by 
proceeding to the extreme limit p” = 0 (e2b # 0 )  that the dominant contributions to G(q) 
at q = 0 are of the form 

(4.11) 

where the coefficients akp are independent of 6, N up to small corrections of O(u$V). 
Perturbatively we thus observe that as the relevant length scale N”’ grows, the 
expansion fails through the growth of the dimensionless couplings uNel2, e2bN’/2. 
Similarly, by taking the extreme limit N + 00 (or ?+ 0) as necessary, we find that deep in 
the semi-dilute regime u ~ N  >> 1 

m m 
(4.12) 

where we see that for the entanglement problem the semi-dilute domain is charac- 
terised by both the length scales N”’, ( ~ b ) - ” ~ ,  in contrast to the problem without 

Introducing (4.11) and (4.12) into (4.10), the reader will observe that at least for d 
near four (E << 1) the coefficient of the leading exponential will not be modified in the 
limit L >> 1 of polymer physics, and therefore, in order to extract the dominant term, we 
may evaluate the integral over the charge ‘e’ by saddle point methods (L >> 1, p’ # 0, m 
fixed). In this way we may systematically obtain corrections to the mean field (or d > 4) 
result through which we may make predictions for the physical dimension d = 3 of 
interest. 

O(q)ls=0”l+ 1 &(e2p’) k N k e / 2  + ck,(e2p’)ku”(up) - - ( k + p ) r / 2  
k = l  k.p - 1 

topological constraints (say e’ = 0) for which only the (up) - -1/2 is important. 

We are thus led to seek solutions e* of the saddle point equation 

aA/ae2 = 0 

t Rather than compute the integrals for fixed A, it is useful in practice to take A = CO at the outset and employ a 
dimensional regularisation scheme. 
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which are stable to small fluctuations 

a2A./(ae2)' > 0 fo re=e*  

providing L >> 1, m fixed or more carefully m2 << (Lp")' as L increases. Now the function 
A(e';A-", uA-'), (4.3), (4.3,  is non-universal, for it depends on the small-scale (A-') 
structure, and furthermore it oscillates wildly so that naively our task appears to be 
entirely non-trivial. On physical grounds, however, we may argue that the origin e* = 0 
is a globally stable minimum which dominates the behaviollr of the integral. We first 
remark that e* = 0 is certainly a locally stable stationary point, (4.5). Now suppose a 
solution e* # 0 is a global minimum of A; then by definition 

(4.13) A(e*, U )  < A(0, U )  

which implies that up to logarithmic corrections (2.3), (4.10) 

S, = -LA(e*, U )  > -LA(O, U). (4.14) 

In contrast, in the absence of topological constraints the entropy S is of the form 

S = -LA(O, U )  + O(ln I,). (4.15) 

Therefore (4.14) is in complete contradiction with the physical expectation that 
topological constraints reduce the entropy S, < S, (2.3), whence e* = 0 is indeed a 
global minimum. 

Assured now that the gaussian saddle point e*=O dominates the behaviour of 
(4.10) up to exponentially small corrections -exp[-L(A(e*) - A(O))] from the subsidi- 
ary solutions e* # 0, we may carry out the gaussian integration to obtain via the identity 

a i  
I d e  e x p ( 2 i e m - e z ) f ( e 2 ) = f ( - - ) ~ e x p ( - $ ) l  aa (ar) a = l  (4.16) 1 

an expression for S, factorised into universal and non-universal components. Sum- 
marising the universal or large-scale aspects by 6(q2, e';, U, N) and the essential 
non-universal components in the long-chain limit L >> 1 by A(e2;, U )  and G ( u ) ,  

x =e';, (4.17) a 
ax 

&(U) 5 -A(x, uA-") - A-" (1 + O(uh-")) ,  

we may write the dominant contribution to S, in the form (see (4.6) et seq.) 

(4.18) 

In order to judge the importance of topological entanglements in the universal 

(4.19) 

which may be obtained by ignoring the topological aspects entirely, we shall make a 
direct comparison between (4.19) and the factored form (4.18) valid when lap is 
respected and L >> 1. 

domain L >> 1, up' c A2 of the naive solution 

exp(S) = 6 ( q ,  0, U, N)IqE0 exp[-LA(O, U)] 
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Analysing first the non-universal function A, we see from the identity 

1 

that order by order in uA-" the corrections induced are of the form 

(4.20) 

(4.21) 

where & = (a /axk)A(x ,  U), x = e';. Observing that 6,& are independent of L, we see 
here that for long chains L >> 1 topological entanglements are unimportant providing 

(4.22) 

where (Gk) l /k /G ,  6Ae ,  naively functions only of the dimensionless coupling uA-", 
summarise the effect of the short-range or non-universal correlations and are therefore 
strongly model dependent. We take (&)1/k/6, GAS - 1. With regard to the consis- 
tency of (4.22), it is important to notice that for our continuation the winding number 
has dimension A'-', reducing only to a pure number for the physical entanglement 
problem (d = 3  or E = 1). Interpreting (4.22), we first observe that deep in the 
semi-dilute regime for which the polymers Va, VB are strongly overlapping, 0,s ubN 
>>1 (see (4.12)), the constraint (4.22) is automatically satisfied for all finite m, so 
entanglements do not modify the physics described by A in this case. For the dilute limit 
ou ubN << 1 (see (4.11)), we find in direct contrast that (4.22) represents an important 
constraint on the system if m # 0, which reflects the difficulty of forming complex knots 
without affecting the large-scale properties of the system when the overlap is small; for 
through 6, Gk the chains are inflexible at scales -A-'. Of course for m = 0 the polymers 
can adopt an untangled configuration, since the higher-order invariants are not 
respected, so we find that (4.22) is irrelevant for all densities (L>>1) as one might 
expect. 

For we find modifications through (4.11), (4.12), (4.18), (4.21), which typically 
for dilute physics ubN << 1 are given by the estimates 

- ( I /LG)~[I+.  , . ( m 2 / ~ b i i ) k ] ~ k e / Z ,  k a l ,  (4.23) 

which may be compared with the semi-dilute estimates applicable in the domain of 
strong overlap 

- (1/&lk[1 +. . . (m2/LbG)k]Nkr/z 

and 

(4.24) 

Analogous to (4.22), we therefore find that entanglements are irrelevant to the physics 
described by d if the winding number m satisfies the constraint 

m 2 < < ~ d / 2 b G 2 .  (4.25) 
As before we find that the induced constraint (4.25) is automatically satisfied if the 
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overlap between the polymers is large, whilst in the dilute regime it plays a significant 
role. It is worth remarking that within the perturbative framework u A-" << 1, the size of 
a polymer chain -L1"/A (random walk), so that (4.24) indeed places a bound on the 
overlap 6, = ( L ' " / ~ l ) ~ p  below which entanglements (fixed m) will play a significant 
role. Here p =A2b (cf (3.8) et seq.) in the link density of the background chain WO. 

Overall we see that for polymers obeying random flight statistics U A-" << 1 entan- 
glements are uninteresting when the polymers are strongly overlapping (ubN >> l), 
whilst in the limit of small overlap (u$V 1) there are important constraints (4.22), 
(4.24), 

m2/b@ << L'", d = 3, L >> 1, (4.26) 

which reflect the difficulty of forming complex (m >0) knots without affecting the 
large-scale or universal behaviour of the chains when the overlap is small and the chains 
are inflexible at scales -A-'. Qualitatively it is clear that 6 is directly related to local 
stiffness of the chain, for suppose 'loops' of lo links 1 <lo<< L are energetically 
unfavourable; then the model (3.1) overestimates the non-universal function ii, by 
terms -(l/~o)(lo/A2)"'2. Assuming that the winding number m satisfies the overlap 
constraint (4.26), then we see immediately from (4.18), (4.19) that the entanglements 
reduce the entropy S by an amount A, 

or equivalently that the configuration numbers C,, C are related as follows: 

C,/C = ( r~) - ' /~  exp(-m2/L;G)/bG. (4.28) 

Typically our approximation scheme is valid for m2<< L3/2fic3, (4.26), so (4.28) can 
represent a massive reduction in the ratio C,/C for long chains L >> 1. The result is of 
particular interest, for if two polymers were originally formed together say in a melt, it is 
reasonable to estimate that Ips will take the value m with probability C,/C. In general, 
then, (4.26) will not be violated, for with high probability m2 << L&ii so entanglements 
are relatively unimportant in determining say the mean square size of a chain (R'), for 
which a parallel argument shows that for both dilute and semi-dilute physics 

(4.29) 

Here E > O  is a numerical coefficient and for simplicity we have suppressed the 
corrections arising from terms of O(ezk), k > 1 (cf (5.31) et seq.). Of course if the two 
loops are formed separately the invariant Ias takes the value m = 0, the constraint 
trivialises and we always find for long chains L >> 1 the behaviour (R2) ,  - (R'), C, - C. 
For L >> 1 (4.29) has also been derived by the Brereton and Shah (1981) mean field 
techniques in the form 

(R2) , / (R2)  = 1 -m2/mE2 (4.30) 

where m g2 = 6La'2b@2 and 8 > 0. 
The above results of course apply only in the domain of random flight statistics 

where uA-" is sufficiently small to ensure that even for L >> 1 the excluded volume 
parameters z = UN"/*, uGu)-"" relevant to the physics of the dilute and semi-dilute 
limits respectively do not modify the universal (or large-scale) structure. 
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5. The asymptotic behaviour of the BreretonShrrh model 

We observed in 8 4 that the dominant contribution cm(q, N) to the function Cm(q, N) 
of primary interest may be factored in the form 

cm(q, N) = N-d/2 J de exp(iem -AL.)d(q2N, e2bNe/2, ubN) 

where A = A(e2p'A-", U A-") is a non-universal function independent of the macroscopic 
scales L'j2/A = NI", ~ 6 - l ' ~  relevant respectively to the physics of the dilute and 
semi-dilute limits, and d is in contrast a universal function depending strongly only on 
these macroscopic scales. 

Focusing attention first on the dilute regime, we argued that for 0, = uCjN << 1 (cf 
(4.11)) the relation (5.1) may be replaced by the simplified form 

cm(q, N) = N-d/2 I de exp(iem -AL)d(qzN, e2bNe'2, uNe12) (5.2) 

where L'/2/A=N'/2 is the only relevant length scale and d may be developed 
perturbatively in the dimensionless couplings z = uNC12, w = e2bNe/2 . We showed that 
if perturbation theory u A-" << 1 is valid then term by term entanglements are irrelevant 
to the physics of long chains L >> 1 providing the overlap constraints 

m2/b+ << L ~ / ~  (5.3) 
and 

m2/b+ << L~", (5.4) 

arising from the modifications to A and d induced by entanglements, are respected. 
Asymptotically for L >> 1, however, the estimate (5.4) will fail through the growth of the 
dimensionless couplings z = uN"'~, w = e2;Nej2 (d < 4) characterising the perturbative 
domain z << 1, so we shall seek here an alternative representation for d valid in the 
swelled or excluded volume limit z = uN"/' >> 1 of dilute physics. 

To describe the asymptotic long-chain L >> 1 properties of the entangled excluded 
volume statistics, an appropriate technique is the renormalisation group in d = 4 - E  

dimensions as formulated by BLZ. We find that in terms of the dimensionless 
parameters a =  u A - ~ ,  R = e2p'A-" the scaling function M = N"I2G satisfies the follow- 
ing renormalisation group equation in the critical domain q/A<< 1, L >> 1 of dilute 
physics ubN << 1: 

[A-+ a W(a,f)-+P(C,f)-+Q(a,Z)N--2Q(Z, a a a G)]M=AA4. 
aA aa an aw (5.5) 

Here the function AA4 is smaller than M by terms of order L-', q/A up to powers of 
In L, ln(q/A) in the E expansion. Perturbatively a simple analysis shows that the 
functions P, Q, W are of the form 

w = 

P = -&R - cz2 + 0(f3, u ~ 2 ) ,  

+ BQ? - C X ' ~  + D X ~ +  0 ( a 3 ,  n3), 

Q = -A0 - Cf + O(f2, U'), 

where A, B, C, D are positive real numbers and we take ii, Z = O(E).  

(5.6) 
(5.7) 

(5.8) 
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To solve the system (5.9, (5.6), (5.7), (5.8) for the scalingfunctionM=N-””G we 
shall follow BLZ and observe that hM does not modify the behaviour of the dominant 
contribution M = N-‘/’d (cf (4.6) etseq.), so in order to determine thestructure of the 
leading term d we may set AA4 = 0 and integrate the simpler bmogmmus equation 
( ( 5 . 3 ,  AM = 0). Writing A ( T )  = he‘ and introducing functions i i ( ~ ) ,  R(T) and N(T) such 
that 

dii(T)/dT = ~ ( E ( T ) ,  3 ( ~ ) ) ,  ii(1) = a, (5 .9)  

dR(T)/dT = P ( i i ( ~ ) ,  R(T)), R(1)  = 3, (5.10) 
d In N(T)/dT = Q ( i i ( ~ ) ,  Z ( T ) ) ,  N(1) = N, (5.11) 

then the reader will observe directly that the homogeneous equation ( ( 5 . 3 ,  AA4 = 0)  
may be formally integrated to give the relation 

d(q2,  f, ii, N, A) = (N/N(T))d’2d(q2, 3 ( ~ ) ,  i i ( ~ ) ,  N(T), N(T)) (5.12) 

through which we may analyse the scaling properties of d and whence c,,,(q, N), (5.2). 
Typically for L >- 1 we might expect 8 to exhibit universal scaling of the canonical 

form 

d = ~ d ( 2 F - - 1 ) / 2  F(q2L2’/A2) (5.13) 

through the appearance (see BLZ) of an infrared stable fixed point E*, f* of the 
renormalisation group equations (5.9)-(5.12), defined as usual as solutions of the 
equations 

(5.14) W(ii*, 3*) = P(E*, f*) = 0 

for which the stability matrix T is positive definite, 

3 apjaii aP/aa 
aQ/aii aQ/aR a = a . . ~ = f e  

T = T(ii*, R*)= [ (5.15) 

In the presence of such fixed points a direct linearisation of the trajectory equations 
(5.9)-(5.11) shows that as the effective cut-off he‘ appearingon the right-hand side of 
(5.12) approaches the scales q << A, L >> 1 of interest through the limit T -* -00, the 
couplings z i ( ~ ) ,  R(T) tend to their fixed point values. To generate (5.13) we then simply 
observe that through the functional dependence d = d(q2N, e2pNs/2, UN”’) we may” 
employ (5.12) and the constraint L(T)=N(T)AZe2T = 1 to show that providing both 

= uNe/’, w = e2bNC/2 are large the function d takes the universal scaling form (5.13), 
where both the critical exponent f i  = (2+ Q(ii*, R*))-’ and the function F(x)  are 
independent of the physical couplings ii, R - e’. For L >> 1 we therefore might reason- 
ably expect the integration over the charge e2 to trivialise in the sense that asymptotic- 
ally d is independent of e2 (see (5.13)), so entanglements modify only the uninteresting 
amplitude A, (4.3), as we found for d > 4 dimensions. 

Regrettably no such fixed point exists within the above framework, for if P = 0 
equations (5.6), (5.7) imply W > 0 unless R = 0 and the origin Z = 0, ii = 0 is always 
unstable, so that the required limit T -f 00 is not easily characterised. Generally we see 
that the unstable runaway i i ( ~ ) ,  3 ( ~ )  as T +  -00 exhibited by the lowest-order renor- 
malisation group equations P - --E& -e3 (d < 4) is uncontrolled, so it is tempting to 
suggest that this instability heralds the dominance of some perturbative fixed point or, 
even more catastrophically, a complete breakdown of universality; however the 
resolution of our problem is less dramatic. 
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Returning to our discussion of the perturbative domain uh-" << 1 and the failure of 
our second estimate (5.4) through the growth of the dimensionless couplings z = U"", 
w = eZCjNe/', we observe that at least for d near four where the saddle point evaluation 
of the charge integral is valid (m finite) we may within the gaussian approximation of 8 4 
partition (5.2) in the form 

dy exp[-y2(6A")] cos 
exp[-LA(0, U)][ j0L(d-2'" 

( L ~ A - "  cm (4, N) = 2N-d/2 

W +I ~ ( d - 2 ) / 4  dy exp[-y2(6A")] cos (5.16) 

where only in the second term do we probe the asymptotic domain w = e26N"" >> 1, all 
z, which exhibits the renormalisation group instability. Here y = Le'p'A-" and GA" 
(dimensionless) characterises the short-range or non-universal correlations in our 
approximation scheme as before (cf (4.17)). We see therefore that for w >> 1 where the 
renormalisation group instability is important the non-universal prefactor is exponen- 
tially small, e ~ p ( - L ' ~ - ~ ' / ~ )  (&A" - 1, independent of L, d > 2), so in the absence of 
more detailed information about the competition between the factor exp(-LA) and the 
qualitatively divergent perturbation 8 expansion of d for w >> 1 (all z )  we may 
reasonably neglect this term and take 

exp[-LA(0, ii)] m2 
C,,,(q, N) = 2N-d/2 dy exp[-y2(ijA")] cos[ (w)] 1/2yc 

(5.17) 

up to exponentially small corrections for L > > l .  The evaluation of this remaining 
integral is still non-trivial, for as L increases we prove in turn both the perturbative 
z << 1 and swelled chain z >> 1 limits of the excluded volume statistics. To determine 
the scaling form for 8 appropriate to the domain of the unstable point f* = 0 (or 
w << 1) proved by (5.17) but otherwise valid for all values of z = we may 
employ the truncated renormalisation group equations (5.9)-(5.11) for which C = D = 
0. Integrating these trajectory equations directly, we obtain the expressions 

(5.18) 

(5.19) 

X ( T ) = Z ~ - " ~ + C O  asT+-m (5.20) 
and 

8(q2, ii, Z, s, A) = ( N / N ( T ) > ~ / ~ ~ ( ~ ~ ,  ii(7), Z(T)N(~) ,  ne') (5.21) 

where Y = (2 + Q(ii*, O)-'), w = vW'(u*, 0) are respectively the usual correlation length 
and crossover exponents associated with the Wilson-Fisher fixed point E* = 

To derive the desired scaling relations for 8 we now employ the freedom in the 
rescaling parameter 7 by choosing L(7) N(7)A2(7) = 1, so that the right-hand side of 
the fundamental equation (5.12) of (5.21) describes the physics of short L - 1 polymers 

(&/B)  + O(E2). 
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and therefore may realistically be evaluated perturbatively in the dimensionless coup- 
lings Z ( T )  = ~ ~ ( T ) L ( T ) " ~ ,  W ( T )  =X'(~)L(T)''* ( ~ ( 7 )  - I). Specialising to q = o for simpli- 
city and recalling the perturbative structure (4.11) exhibited by the dilute solution, we 
find using (5.21) that 

(5.22) 

where A, 6, e k  are numerical coefficients. Eliminating T from (5.22) through (5.18)- 
(5.20) and the constraint L(T) = 1, we may then express d in the parametric form 

d ( 2 ~ - 1 ) / 2  

b ( i i , 2 , N , A ) = A  [( - )'"L] ( l + g p ) { l +  f ~k[2L'"(E)1-2u]]  (5.23) 
P ( Z )  k - 1  

where the parameter p ( z )  = C ( T )  describes the dependence of e on 2 - z through the 
equation 

(5.24) 

In particular for z >> 1 we may solve (5.24) in the form p = fi*(1 +O(f-2W'E )), so that 
asymptotically p assumes its fixed point value and we find that d exhibits universal 
scaling behaviour with critical exponents v, w, 

(1 -p/fj*)-'l'"p = (1 - ij//a*)-E/2"fjp E f - = fiL"/2. 

(5.25) 

where the f dependence, although naively non-perturbative for L >> 1, is suppressed 
through the charge integration by the non-universal prefactor exp(-LA) evident in 
(5.17) to give effectively 2 = O(l/L). Naturally solving (5.24) for z << 1 we find p - z, 
and the perturbative results of 0 4 appropriate to the random Right regime z << 1 are 
reproduced. 

To achieve the scaling form for Cm ((5.2), q = 0) of particular interest, we may now 
introduce the representation for b(z), (5.221, (5.241, into (5.17) to give up to exponen- 
tially small corrections the expression 

where C(z) is the topologically unconstrained configuration sum (say e 2  = 0) 

(5.27) 

and the variable p(z) is to be eliminated in terms of z through (5.24). For clarity we 
have artificially set c k  = 0, k > 1, and ignored the modifications induced by A for which 
the estimates (4.21) et seq. are unchanged. We should perhaps remark that our 
approximation scheme is self-consistent in that Cm(x), C(z) are related by the 'integral' 
s u m  rule 

m 

C(z) = dm Cm(z). 
-m 

(5.28) 

Most generally we find therefore that entanglements do not drastically modify the 
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nature of the polymer statistics providing the winding number m does not violate the 
bounds 

m ’ << ~ ’ - ~ ‘ ~ 6 ’ ( p  (2 ) / a  )’v-l, all z, (5.29) 

(5.30) 

where in the perturbative region z << 1 associated with random flight statistics (5.29) 
reduces to our previous result (4.24), whilst the estimate (5.30) is unchanged (see 
(4.22)). 

To illustrate the nature of the modified bound (5.29) it is useful to consider the 
structure of the mean square polymer size (R’),, (2.6). Observing that 

(5.31) 

we may in direct analogy with the calculation of C, employ (5.2), (5.21) to show that for 
dilute (0, = U ~ N K  1) conditions the Brereton and Shah (1981) expression (4.29), (4.30) 
must be replaced by the form 

where (R’), (2.7), is the topologically unconstrained polymer size 

(5.32) 

(5.33) 

and p @ )  i s  to be eliminated in terms of z = CL’’’ by means of the relation (5.24). 
Here A, B, C are numerical coefficients and we have again for simplicity ignored the Z k ,  
k > l ,  terms arising from the topological modifications to A, d; see (5.27) et seq. 
Providing the bounds (5.29), (5.30) are respected, we thus find that entanglements are 
unimportant in the sense that 

(R’), -(R~)-L’”, (5.34) 

so we observe universal behaviour described by the usual (or linear polymer) 
exponents. Here Y = for random flight statistics or Y -$  (Flory 1969) for swelled 
chains. 

For the physical entanglement problem (d = 3) we may now use (5.33) to rephrase 
the bounds (5.29), (5.30) in the form 

(5.35) 

where p = A’F is the link density of the background chain %@ and (R’), is the mean 
square size of the polymer loop under random flight ( U  = 0 or 8 temperature conditions 

(R’), =A(L/A’). (5.36) 

As before 6, Zk, k P 2, summarising the effect of the short-range correlations are 
independent of L and therefore of little interest; we take GA, GkAk - 1. 

u - ( I - ~ / T ) )  
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Associated with constraints (5.35) are two critical winding numbers mc, &,, 

m = ( R  2)3/2((R ' )@/ (R  '))'p, 
d = 3 ,  2 3 / 2 -  f i : = ( R  > e  P, 

(5.37) 

which serve to define the domain in which our analysis is valid, assuming for the present 
that dilute conditions are observed. Of particular importance is the ratio &/mC which 
indicates whether the non-universal aspects due to A or the long-range correlations 
summarised by d are dominant in determining the breakdown through (5.35) of our 
approximation scheme and the appearance of statistics for which the nature of the 
topological constraints are important. We see directly from (5.37), (5.33), (5.36) 

(6c /mc)4  = ( R ~ ) / ( R ~ ) ~  = f ( . ~ )  2 1 (5 .38)  

where f(Z) is a monotonic increasing function of 2 - ilL"/' of the form 

1 + O ( f ) ,  .T<< 1 ,  
[(z2/i l*)z~EL]2u-1(1 + o(P-2"'")), z >> 1. P ( f )  = 

Broadly then, for asymptotically long chains (2  >> 1 )  m,c< fi,, so apparently the failure 
of our approximation scheme for winding numbers a m c  does not indicate a breakdown 
of universality, but rather the inability of the renormalisation group in d = 4 - E 

dimensions to construct the dominant singularities of G. In contrast, for the random 
flight region z << 1 the implication is somewhat different, for we observe &,/mC-  1 so 
that naively the artificial division between short-range and long-range correlations 
employed above can be misrepresentative. Apparently here the short-range details 
described through A are equally important in describing the long-range properties of 
the chains for winding numbers m a m, - 6,, so we must critically review the relevance 
of the continuous gaussian model used, (3 .1) .  Of course with this point of view it is 
therefore not surprising that the E expansion, in seeking to systematically modify the 
random flight expressions, fails to construct the expected universal scaling forms for 
large winding numbers. Indeed for E << 1 we see rti,/m,(s)<< 1 (cf (4 .22) ,  (4 .26)) ,  in 
direct contrast to the result & / m C a  1 (cf (5.38)) in d = 3 dimensions. 

Focusing attention finally on the semi-dilute regime where the polymers strongly 
overlap, u @ N > > l ,  we recall that order by order in perturbation theory topological 
aspects are irrelevant if 

m << L 3 9 ,  d = 3 ,  (cf (4 .10) ,  (4.23),  (4.24), (4 .26)) .  

If we therefore assume that the excluded volume coupling uh-"  is unexceptional, we 
may rewrite this constraint in the form 

m2 << (u@N)L'", (5.39) 

so that for L >> 1 and large overlap 0, = u@N >> 1, entanglements are entirely negligible, 
in the sense that even deep in the critical semi-dilute regime where the length scale 
(up")-"2 grows without limit, it is difficult to see how this simple estimate might fail. 
Throughout the semi-dilute domain we would therefore expect that topological entan- 
glements will not modify the large-scale or universal behaviour of the polymer system. 
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6. Discnssion 

Within the framework afforded by the partial classification of the topological aspects by 
the Gauss invariant I&, (2.1), we have shown that the universal characteristics of a 
system of two long polymer loops are insensitive to the presence of topological 
entanglements providing the overlap constraints 

(6.1) m2((R 2 ) / (R  2),)2 << ( R  2)3/'p ((3 A)', 

m' << ( ~ ~ > 3 e l ~ p ( ( ; i ~ ) ( ~ / J , ) ,  (6.2) 
are not violated. Here p is the link (or monomer) density of the background polymer WO 
and (Rz)o, (R') are the mean square sizes of the smaller polymer loop Wa under random 
flight U = 0 or swelled chain U # 0 conditions (L >> 1) respectively. The functions (3, W 2  
independent of L summarising the effect of the short-range or non-universal cor- 
relations are directly related to the 'stiffness' of the polymer chains at scales -A-' where 
A is representative of the inverse monomer spacing. 

A relation of particular interest which follows directly from the applicability of the 
gaussian approximation for long chains L >> 1 and winding numbers m bounded by the 
constraints (6.1), (6.2) describes the fractional reduction in the configuration sum 

Cm 1 _- (6.3) 

Valid typically for m2<< L2-"b, v -$  or $, the relation (6.3) can represent a massive 
reduction in the ratio C,/C for L >> 1. This result is of special value, for we may argue 
(cf (4.29) et seq.) that if the loops were originally formed together in a melt it is highly 
probable that showing that (6.1), (6.2) will generally be valid (L >> 1) and universality 
will be observed. For example, studying the expansion factor (R2)m/(R2),  we find that 
entanglements lead to physical expansion 

(R2)m/(R2)= 1 + C*(m2/&,) ,  c* > 0, (6.4) 
in agreement with the work of Brereton and Shah (1981) on the random flight limit 
where the critical winding numbers are 'degenerate', m, - &, - m,*. For long chains 
formed in the melt we would thus expect to observe universality in the form 

(R2)m -(R2>.  (6.5) 
Of course if the loops were formed separately the invariant IaB must take the value 
m = 0 and the constraints (6.1), (6.2) become trivial. 

Trivialising for m = 0 and semi-dilute systems U ~ N  >> 1, our constraints reflect the 
difficulty of forming complex knots m >> 0 without affecting the large-scale properties of 
the system when the overlap between the polymers is small and the chains are inflexible 
at scales -A-'. Associated with the constraints (6.1), (6.2) are two critical winding 
numbers 

m ? = (R 2)3/2 (( R ( R  2))2p, (6.6) 

&if =(R2)3e'2p, (6.7) 

( t f ' ~ , / m ~ ) ~  = (R2) / (R2)@ = f ( f )  B 1 (6.8) 

which satisfy a relation of the form 

where f ( 2 )  is a monotonically increasing function of f - uL"~ in the dilute domain 
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u@N << 1 and is effectively constant for semi-dilute physics. Typically for asymptotically 
long chains L >> 1 and dilute conditions uFN << 1 we can estimate (lji,/mc)4 - L2"-' >> 1 
where v -$  is the Flory exponent associated with the mean square size of a swelled 
(2 >> 1) polymer loop ( R 2 )  - LZy, so the constraint (6.1) is of dominant importance. To 
interpret (6.1) it is useful to introduce the concept of an equivalent flexible chain 
familiar in polymer physics. As usual, defining an effective monomer spacing A*-' such 
that 

( R ~ ) = L A * - ~ - L ~ ~ ,  (6.9) 
we see that the ratio 

(R2)l(R2)* = (A/A*I2 
implies through (6.1), (6.6) that as the effective link size A*-' increases at fixed overlap 
LjU = (R2)3'2p the critical winding number m, is reduced as one might expect. 

The ratio &/m, is of particular importance for it indicates whether the non- 
universal aspects due to A or the long-range correlations described by d are dominant 
in determining the breakdown of our approximation scheme. For swelled chains Z >> 1 
we have already noted above that &/mC >> 1 which would indicate that for winding 
numbers m d m,<c &universality will be observed but whose description lies outside of 
the framework defined by the renormalisation group adopted in 0 5.  In contrast, for the 
random flight Z << 1 regime the implication is somewhat different, for we observe 
G c / m c -  1 so that the artificial division between short-range and long-range cor- 
relations employed above, (4.6), (4.7), can be misrepresentative. Apparently here the 
short-range correlations described through A are equally important in describing the 
long-range properties of the chains for m =s m, - fi,, so to describe the physics we must 
first critically review the relevance of the phenomenological gaussian model employed. 
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